Weight Multiplicities For

نویسنده

  • THOMAS BLIEM
چکیده

We explicitly determine quasi-polynomials describing the weight multiplicities of the Lie algebra so5(C). This information entails immediate complete knowledge of the character of any simple representation as well as the asymptotic behavior of characters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CRYSTAL GRAPHS AND q-ANALOGUES OF WEIGHT MULTIPLICITIES FOR THE ROOT SYSTEM

We give an expression of the q-analogues of the multiplicities of weights in irreducible sl n+1-modules in terms of the geometry of the crystal graph attached to the corresponding Uq(sl n+1)-modules. As an application, we describe multivariate polynomial analogues of the multiplicities of the zero weight, refining Kostant’s generalized exponents.

متن کامل

Classification of Harish-Chandra Modules over the Higher Rank Virasoro Algebras

We classify the Harish-Chandra modules over the higher rank Virasoro and super-Virasoro algebras: It is proved that a Harish-Chandra module, i.e., an irreducible weight module with finite weight multiplicities, over a higher rank Virasoro or super-Virasoro algebra is a module of the intermediate series. As an application, it is also proved that an indecomposable weight module with finite weight...

متن کامل

Classification Of

For any reductive Lie algebra g and commutative, associative, unital algebra S, we give a complete classification of the simple weight modules of g ⊗ S with finite weight multiplicities. In particular, any such module is parabolically induced from a simple admissible module for a Levi subalgebra. Conversely, all modules obtained in this way have finite weight multiplicities. These modules are i...

متن کامل

Fast Recursion Formula for Weight Multiplicities

The purpose of this note is to describe and prove a fast recursion formula for computing multiplicities of weights of finite dimensional representations of simple Lie algebras over C. Until now information about weight multiplicities for all but some special cases [1 ,2] has had to be found from the recursion formulas of Freudenthal [3] or Racah [4] . Typically these formulas become too laborio...

متن کامل

Se p 19 99 Bethe Equation at q = 0 , Möbius Inversion Formula , and Weight Multiplicities : I . sl (

The Uq(ˆ sl(2)) Bethe equation is studied at q = 0. A linear congruence equation is proposed related to the string solutions. The number of its off-diagonal solutions is expressed in terms of an explicit combinatorial formula and coincides with the weight multiplicities of the quantum space.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009